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Executive Summary 

/ 

Manned space flight crew training is on5 of the most challenging and computer intensive 
The computing power required to create a applications for real-time simulation techFdogy. 

convincing artificial reality r mission training and flight software verification has 
traditionally pushed the state real-time computing, often exceeding the capabilities of 
commercially available cases, custom one-of-a-kind simulation solutions have 
been utilized for space the limitations of commercially available computing 
systems. The that many powerful simulation 
technologies 
------- 
Institute (SwRI) in simulation host computer 
simulation technologies for use in spaceflight training. The focus of the investigation is on the next 
generation of space simulation systems that will be utilized in training personnel for Space Station 
Freedom operations. 

computer intensiy simulatio challenge3thal must be dolved th ough the u k  o>fficient, effektive, 
and enduring simulation solutionS, It imo longer necess& d e s i r a b l e  to a b q t  expensive, unique 
solutions to $ace flight simulation problems. 

SwRI conclude 'that NASA should pursue a distributed simulation host compuEr system 
architecture for the & rather than a centralized mainframe based arrangement. A distributed 
system offers many advantages and is seen by SwRI as the only architecture that will allow NASA 
to achieve established functional goals and operational objectives over the life of the Space Station 
Freedom program. 

I' a t i s r epor t  presents the findings of a 

The p lann2 G k t i o n  Training F a c h y  - (SSTF) pro$s&offer many significht, 

5[@L& / / , - - / 7 6  a - p  f P P C J y I L  ' f - 5 7 )  P p - f - - - - - - ~ ~ @ ~ =  - G- 

Several distributed, parallel computing systems are available today that offer real-time 
capabilities for time critical, man-in-the-loop simulation. These stems are flexible in terms of 

computing power. New technologies for tightly coupling -el processors allow distributed 
architectures to provide main frame class computing power without any of the problems associated 
with developing, maintaining, and upgrading main frames for real-time applications. 

connectivity and configurability, and are easily scaled to / eet increasing demands for more 

New trends in the development of real-time Ada applications also suggest that industry 
standards and practices are emerging that promise to eliminate the need for custom, nonstandard 
Ada implementations in real-time environments. These trends should be researched in further detail, 
so that the benefits of new real-time Ada developments may be best exploited to achieve the 
established SSTF functional goals and objectives. 



In addition, it is recommended that further research be performed in investigating SSTF 
simulation challenges and the best application of enabling simulation technologies. Identification and 
planning for these challenges will aid in the process of translating the SSTF concept into an enduring 
training system design. The following is a list of candidate areas that SwRI recommends for further 
research: 

- Automation & Robotics Simulation 
-Investigation of Robotic Sensor Simulation Issues 
-Investigation of Embedded Training Issues 

-Investigation of CAD/Visual Scene Database Correlation Issues 
-Investigation of Visual and Tactile Correlation Issues 

- Robotics/Visual System Requirements 

- Embedded Avionics 
-Investigation of Avionics Simulation Requirements 
-Investigation of Simulate vs. Stimulate Issues 
-Investigation of Knowledge Based System Simulation Issues 

-Crew Vehicle Interface 
-Front-End Analysis of Crew Training Needs 

- SSTF Concept Development 
-Investigation of Real-Time Ada Directions 
-Identification of Real-Time CASE Requirements 
-Investigation of Real-Time Operating Systems 
-Investigation of Processor Communication Issues 

Focused research addressing technical issues in each of these areas is needed to identify, plan 
for, and reduce risks associated with SSTF concept development. Early warning of space station 
simulation challenges and identification of candidate technical solutions will better enable future 
manned space flight simulation facilities to become economical, maintainable, supportable, and 
instructionally effective training systems. 

.. 
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1.0 Introduction 

Manned space flight simulation requirements place a heavy demand on real-time computer 
resources and have historically exceeded the capabilities provided by commercially available systems. 
Southwest Research Institute (SwlU), in investigating the technical issues associated with host 
simulation computer systems applicable for manned space Eght simulation, has elected to focus this 
research on the needs of Space Station Freedom oriented simulation. 

1.1 Document Background 

Future astronauts, scientists, mission specialists, and ground support personnel assigned for 
Space Station Freedom operations will learn the hands-on specifics of their job tasks within the Space 
Station Training Facility (SSTF) at the Johnson Space Center (JSC) in Houston, Texas. The SSTF 
will provide a simulated near real-world environment sufficient for conducting mission rehearsal 
training for entire flight crews, verifying candidate flight software loads, and instructing personnel in 
the detailed operation of space systems. 

The SSTF is planned to become one of the most sophisticated man-in-the-loop simulation 
facilities ever developed. Many advanced simulation challenges are to be expected in developing the 
SSTF concept due to the scope and breadth of the overall training problem and the high technology 
content of planned embedded space systems. Successful concept implementation will rest in large 
part on the ability of SSTF planners and decision makers to forecast these challenges, and 
accommodate them in the SSTF concept as it evolves. 

1.2 Document Purpose 

The purpose of this document is to address one of the most critical areas in the concept 
development of the SSTF environment. This area is the host simulation computer resources that will 
serve as the backbone of the SSTF student training environment. Conceptual planning for the host 
computer complex must give consideration to potential simulation challenges and technological issues 
associated with the future direction of real-time simulation computing. Information is provided in 
this document at a high level and covers a broad scope. This approach provides an overview of 
potential simulation problems and candidate solutions so that they may be identified and investigated 
in further detail. 

1 3  Document Overview 

This document describes a preliminary SwRI investigation of technical issues surrounding the 
host Simulation computer resources and the potential simulation challenges that can be expected in 
developing the SSTF concept. During the period of investigation, over sixty technical reports and 
publications have been reviewed, and suppliers of state-of-the-art real-time simulation capable 
computers were interviewed in order to achieve a firm understanding of the technical issues 
associated with the definition of the SSTF host simulation computing needs. 

The information presented in this document is divided into six sections and one appendix. 
Section 1 provides the background purpose and overview of the document. Section 2 provides a brief 
review of key development concepts that lay the foundation for the SSTF design. Section 3 identifies 
the rationale behind the development concept in terms of the functional goals and objectives that 
NASA has established for the SSTF. Section 4 discusses potential simulation challenges and how 
these challenges affect the host computer resources concept. Section 5 is review of state-of-the-art 
simulation technologies that are candidates for implementation in the SSTF host simulation computer 
system design. Finally, Section 6 assesses the technical issues and potential effectiveness of these 
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enabling simulation technologies to meet anticipated simulation challenges and attain the established 
SSTF goals and objectives. The appendix contains a Listing of the reference technical reports and 
publications used as a basis for this study. 
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2.0 SSTF Concept Definition 

The SSTF will be the primary training facility for instructing crew members, ground support 
personnel and space station customers in the operation of on-orbit systems. The Simulation and 
Training Environment (STE) will support real-time, man-in-the loop operation of embedded core 
space station systems, mission specific payloads, and free-flying space vehicles. Several functional 
and operational goals concerning life cycle cost, system reliability, configuration supportability, and 
training utility have been identified for development of the SSTF concept. To facilitate achievement 
of these goals, several SSTF development ground rules have been established. These ground rules 
involve the incorporation of Data Management System (DMS) flight software, standardization of 
simulation software, computer system compatibility (a single family of computers), reuse of available 
software (engineering models), and flexible training modes. 

2.1 Integral DMS Role 

The on-board space station operational management system and associated avionics, otherwise 
known as the DMS, will be stimulated within the SSTF to allow for realistic mission rehearsal and 
provide a near real-world environment for the verification of flight software. This capability will be 
provided through the integration of a government furnished equipment (GFE) "DMS kit" within the 
SSTF simulation environment. The DMS kit consists of a functional shipset of Standard Data 
Processors (SDPs) that execute space station €light software, and a Simulation Interface Buffer (SIB) 
that allows the SDPs to be functionally and physically stimulated by a host simulation computer. 
Flight equivalent rather than flight qualified SDPs will be utilized within the DMS kit. These SDPs 
will execute the same unmodified flight software that will be utilized in the space station. 

2.2 S / W  Standardization 

The SSTF is one of the many customers of the Software Support Environment (SSE) 
contractor that provides a common Ada Programming Support Environment (APSE) for all space 
station related software development. The SSE establishes the tools and rules for software 
standardization across the Space Station Program (SSP). The SSE will also serve as a software 
repository for SSP simulation software developed by the C/D Workpackage prime contractors. The 
SSTF concept calls for heavy use of SSE software to minimize the need for SSTF unique software 
development. Commercial off-the-shelf (COTS) software will be utilized to the greatest extent 
possible (i.e. operating systems and support software) to enable the SSTF configuration to be as 
flexible and as supportable as possible, without reliance upon any single source for maintenance and 
reconfiguration. 

2 3  Single Family of Computers 

The SSTF concept also calls for participation where applicable in the Operations Automatic 
Data Processing (OADP) plan that will establish a single family of computers for mission operations 
support. The intent of this plan is to establish computer system commonality among the various 
mission operations elements such as the Shuttle Mission Training Facility (SMTF), Space Station 
Support Center (SSSC), Mission Control Center (MCC) and the SSTF. The current OADP concept 
includes minimal considerations for the special real-time simulation needs of the SSTF. In general, 
the OADP packaged system requirements address real-time capabilities as an "upgrade" option, 
which does not currently reflect industry practice. As discussed in Section 5.2, real-time simulation 
computers must be designed from the ground up with much consideration given to bus design, 
processor integration, and operating system control to assure that real-time simulation performance 
is deterministic (ie. predictable, repeatable, and adhering to strict timing requirements), fault 
tolerant, and easily scalable to accommodate expanding simulation requirements. Data processing 
systems not originally designed for real-time operation do not typically serve well in the real-time 
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role due to inherent architectural deficiencies and the need for custom solutions for real-time 
simulation appiica tions. 

2.4 SSE Engineering Model Incorporation 

A key element in the SSTF concept is the incorporation of engineering software simulation 
models for each space station system. Defined systems are: Guidance Navigation and Control 
(GN&C) system, Electrical Power System (EPS), Thermal Control System (TCS), Environmental 
Control and Life Support System (ECLSS), Communication and Tracking (C&T) system, Fluid 
Management System (FMS), the propulsion system, robotic manipulators, payloads, international 
partner elements, free-flyer systems, and extra vehicular activity (EVA) system. These models, 
developed by the C/D workpackage prime contractors and maintained by the SSE, will be modified 
for real-time training simulation usage and will execute within the simulation host computer. 

2.5 Training Modes 

Several training modes of operation will be supported by the SSTF simulation environment. 
These modes include up to two simultaneous stand-alone part-task training sessions, combined 
systems training among two or more crew environments, integrated training that includes the Space 
Station Control Center (SSCC), and joint-integrated training sessions that include participation by 
other external-to-JSC simulations. 

2.6 Computer Resource Requirements 

The space station simulation environment is expected to become one of the most complex 
man-in-the-loop simulation systems ever developed, surpassing the Space Shuttle Mission Simulator 
in terms of processing throughput, training scenario complexity, and instructional system demands. 
The National Aeronautics and Space Administration (NASA) has estimated that the SSTF will 
require in the neighborhood of 3 million executable lines of code and over 150 million instructions 
per second (MIPS) of processing power to provide a convincing artificial reality for rehearsing on- 
orbit operations. These requirements are expected to expand as the station’s core system capabilities 
and customer payloads become more sophisticated and incorporate an increasing level of automation 
and robotics technologies. 
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3.0 SSTF Concept Rationale 

The SSTF concept rationale is intended as a foundation for the design of a training facility 
that provides for the achievement of certain functional goals and operational objectives dealing with 
system reliability, instructional effectiveness, and efficient utilization of facility resources. A three- 
part strategy is apparent in the establishment of the SSTF ground rules. The first part concerns 
the huge expense involved in maintaining custom developmental hardware and software. 
Development, purchase, and maintenance of computer software currently accounts for over 20% of 
the NASA budget each year. In addition, 10% of the total NASA budget is spent on writing new 
software. Due to the software intensive nature of the space station, these allocations are expected 
to skyrocket as development progresses. NASA wishes to control this trend during SSTF 
development by minimizing the need for custom simulation solutions that may prove expensive to 
support. The second part of the concept rationale is to ensure that a near real-world simulation 
environment exists in the SSTF. This will provide mission development and verification activities 
with a high degree of confidence in the expected on-orbit performance. The third part of the strategy 
deals with the need to train the entire Freedom Station Mission Support Team as a single unit for 
highly transferrable and effective training sessions. The following sections discuss each of these three 
strategies in further detail. 

3.1 Decrease Reliance on Custom Simulation Solutions 

Space flight simulation during the Apollo, Skylab, and Space Transportation System (STS) 
eras relied mostly on custom simulation solutions that were necessary to support the demanding 
training requirements associated with manned space flight operations. Space flight simulation is one 
of the most difficult types of simulation, requiring huge amounts of computer processing power to 
adequately support the safety critical aspects of manned space flight. Commercial support of real- 
time simulation resources did not exist during previous space flight simulation development efforts, 
and unique solutions were innovated so that the training problem could be effectively solved. 
Although technically effective, these custom solutions were difficult and expensive to support, 
maintain, reconfigure, and modify as new mission requirements were identified. In the past five 
years many changes have occurred in the real-time simulation industry. The size of the industry 
has nearly tripled and is currently estimated to be worth over $2.5 billion. As a direct result, a 
variety of real-time simulation capable computers and associated software are becoming commercially 
available to meet the demand for simulation and training systems. Industry standards and practices 
are beginning to emerge that promote the use of open architectures for real-time applications. 
Custom, one-of-a-kind, proprietary simulation solutions are no longer necessary or desirable. NASA 
is therefore intending to develop the SSTF with as high a content as possible of commercially 
available real-time simulation resources. NASA also wishes to minimize the need for developmental 
software by capitalizing on other SSP software applications that can be effectively reused with 
minimum modifications in the SSTF. This is a basis for the incorporation of SSE maintained 
engineering software models of Freedom Station systems. 

3.2 Provide Realistic System Responses for Mission Rehearsal 

The need to verify flight software and effectively train personnel for mission operations is 
a basis for the ground rule to incorporate DMS flight equivalent hardware and unmodified flight 
software. It is expected that by incorporating the actual flight software, mission to mission 
reconfiguration can be accommodated quickly, and a high level of system fidelity can be assured. 
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3 3  Provide Environment for Training Freedom Station Ground/Space Team 

The SSTF will also be the center of training for all SSP participants. To accommodate the 
wide variety of training needs required by astronauts, scientists, mission operations specialists, and 
ground support personnel, the SSTF concept provides for many different modes of training 
operations. The rationale for these modes is to ensure that the SSTF resources may be flexibly 
configured to adequate@ provide for the training needs of all SSP participants. 
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4.0 SSTF Systems Simulation Challenges for Concept Development 

The high degree of technological sophistication envisioned for the Freedom Station promises 
to present many interesting and challenging systems simulation requirements. These simulation 
challenges must be identified and planned for during the system requirements phase to minimize the 
number of potential surprises that may arise during the SSTF development cycle. Three of these 
technically challenging advanced simulation needs are discussed in the following sections. These 
SSTF simulation challenges are: provisions for concurrent yet independent SSTF training sessions, 
contextually rich display and control systems for crew/vehicle interfacing, and the stimulation of 
multi-layered, embedded avionics systems for highly realistic, on-orbit operations training. 

4.1 Concurrent/Independent Crew Training 

The initial SSTF concept supported up to five simultaneous training sessions utilizing the 
Operational Computer Complex (OCC). As a result of the scrub effort, this requirement has been 
reduced to two simultaneous SSTF training sessions, with provisions for the future accommodation 
of additional sessions. A training session is considered to be the crew operation of a flight 
environment training device such as a Node Systems Trainer (NST) or the Station Proximity 
Operations Trainer (SPOT). During stand-alone operation, each trainer is individually configured 
to support part-task training objectives. These concurrent yet independent training sessions will allow 
several crew members to simultaneously interact with and focus on the operation of a single 
embedded system such as the GN&C, TCS, or EPS in separate mission/trainer specific situations. 
For example, NST #1 could be configured for instructing crew members in the operation of the 
GN&C system, while NST #4 could be configured for TCS related operation. The separate crews 
would then train in the NSTs simultaneously, without the other NST affecting the particular training 
session. The individual flight environment trainers may also be configured to support combined, 
integrated, or joint integrated training sessions to provide varying degrees of ground/space team 
coordinated mission training. 

Configuring the OCC in a hardware efficient manner to provide for multiple, simultaneous 
yet separate training sessions is a significant simulation challenge. The operation of each trainer is 
required to be completely independent and free of interaction with other training sessions. If one 
trainer should experience a hardware or software failure, the other training session(s) should not be 
affected. These requirements lead to a multicomputer configuration, due to the need for physical 
partitioning in order to meet the operational trainer performance objectives. Specific technical issues 
associated with stand-alone vs. combined trainer operation include multiple SIB communications, 
functional allocation of simulation hardware and software, and run-time executive distribution. 
Several architectural technologies discussed in Section 5 hold promise for meeting the technical 
challenges posed by the multiple yet independent/concurrent training problem. 

4.2 Crew Vehicle Interface Challenges 

The sophisticated display and control features planned for the Multi-Purpose Applications 
Consoles (MPACs) present another simulation challenge for effective crew training. Several types 
of MPACs (fixed, portable, etc.) will be utilized on board Freedom Station. The display and control 
capabilities provided by the W A C  are contextually rich, offering provisions for multiple high 
resolution (High Definition Television type) visual displays featuring color 3-D graphics and 
pan/scroll/zoom, voice recognition capability, and force sensing/reflecting hand controllers. To aid 
in robotic operations, the MPAC may also feature aural/tactile cues for signaling critical situational 
information (i.e. when load limits are exceeded on manipulator joints or when end effector contact 
is achieved). The MPAC is the crew members’ interface into the inner (and outer) workings of the 
Station. Through use of an MPAC, the crew member will have the power to: control the station’s 
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orbit; solve embedded systems operating problems; monitor and control the flight of co-orbiting 
vehicles within the station's control zone; and install, orient, operate, and service payloads. 

A key training objective is to adequately model the richness of the Freedom Station 
operating environment within the SSTF to promote the direct transfer of training from ground to 
orbit. Sophisticated simulation techniques are needed for synthetic image generation and 
environmental modeling to provide a convincing artificial reality that is effective for transferring 
lessons learned from the SSTF to on board operations. Successful training of time critical, man-in- 
the-loop operating scenarios depends upon the ability of the SSTF to accurately cue the crew 
member. Example scenarios include reboosting the station orbit, maneuvering the station for thermal 
control, proximity operations control of multiple vehicles, and robotic manipulator operation. 
Effective flight safety and emergency procedure training in the SSTF will rest upon the training 
system's ability to replicate the sensory environment and the physical factors associated with critical 
condition Freedom Station scenarios. The cognitive perception and response patterns developed by 
crew members in training should be directly applicable to space operations, without the crew having 
to "relearn" new patterns in space to overcome the deficiencies of their ground based training. The 
key Crew Vehicle Interface (CVI) simulation challenge therefore, is to adequately define and 
configure the SSTF simulation systems in terms of training capabilities so that all anticipated training 
needs may be easily accommodated as the development progresses. 

4 3  Embedded Space Systems Simulation Challenges 

The Congressionally mandated initiative to integrate automation and robotics technology into 
the Freedom Station design presents many significant challenges for the implementation of the SSTF 
concept. Embedded expert systems, autonomously operating systems, adaptive control structures, on 
line intelligent tutors, and teleoperated robotic systems serve as examples of the type of technologies 
that are planned for space station incorporation. The SSTF concept definition must plan to 
accommodate the space station hooks and scars that will allow these technologies to be integrated 
into on-orbit operation. The real-time computer complex configuration concept should be considered 
with these technologies in mind to avoid unwanted surprises during SSTF development. 

43.1 Embedded Avionics Systems Architecture 

The DMS architecture provides a multi-layered communication structure for interfacing 
embedded avionics systems with the core station information system. The DMS architecture is 
designed to be avionics application independent, so that a variety of systems, sensors, and control 
effectors may be accommodated as the station development progresses. This is a challenging 
structure for time critical, man-in-the-loop simulation due to the separation and allocation of 
functions between DMS layers. Current aerospace avionics architectures are typically single layer 
configurations, with multiple busses providing the system to system connectivity, as shown in Figure 
4-1. Avionic systems are tightly coupled in that they utilize compatible clock cycle speeds (i.e. 50 Hz, 
25 Hz, etc.) and use extensive time tagging of data items to ensure functional synchronization 
between the individual avionics tasks. In current simulator architectures, avionic system elements 
that are centralized and perform CW critical functions are typically stimulated within the simulator 
training device. Other avionic system elements are functionally simulated at the level of resolution 
necessary to feed the stimulated elements with realistic flight data. Theoretically, this approach 
provides for realistic mission oriented training, and also reduces new software development 
requirements for providing mission specific trainer configurations. 

Figure 4-2 shows an example of the multilayered DMS architecture applied to the GN&C 
system. The upper layer consists of the supervisory and management functions that are allocated to 
the SDPs. The bottom layer consists of the distributed subsystems and sensors that make up the 
GN&C avionics suite. The bottom layer also feeds sensed and conditioned data to the upper layer, 
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Figure 4-1 
Aerospace Avionics Architecture 
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where it is transformed into information for communication to the crew or to other space station 
systems, This division of functions between layers provides for loose coupling between the 
supervisory layer and the real-time control layer. Upper layer elements are interconnected via a 
global network consisting of a 100 megabits/second (Mb/s) token ring bus conforming to the Fiber 
Distributed Data Interface (FDDI) standard, while lower layer elements communicate with the upper 
layer via a 1 Mb/s local mux bus. The loose coupling approach offers the potential for application 
dependent clock cycle speeds within the lower layer, which may present synchronization problems. 
For example, an embedded imaging sensor/processor may run at video speeds, while an embedded 
rotary joint processor may be required to run at a different speed that is derived from a dynamic 
stability analysis. Automation and adaptive control technologies applied to the upper layer do not 
present as much of a simulation problem due to the incorporation of flight equivalent SDPs running 
FSW within the SSTF. 

Advanced automation technologies, such as imaging machine vision type sensors and 
knowledge based controllers wiU call for trade-offs to be made as to the method for providing the 
functionality of the embedded system in the SSTF. Alternatives are to either Functionally Simulate 
the embedded system within the host computer, Stimulate flight equivalent hardware executing the 
embedded system software, or Emulate the embedded system on special purpose COTS hardware. 

43.2 Embedded Knowledge Based Systems/Autonomous Systems 

Autonomous or knowledge based systems (KBS) embedded within the lower layer of the DMS 
architecture may present special simulation problems. Implementation of these systems currently 
requires special purpose processors that perform symbolic computing operations. Functional 
simulation of expert systems is a relatively uncharted territory due to the limited scope and small 
number of KBS systems that have been incorporated into production aerospace vehicles. SSTF 
accommodation of these technologies may require that flight equivalent symbolic processors be 
stimulated to ensure representative embedded system performance. Stimulation of these processors 
would in turn put special requirements on the host based environment simulation model. The 
environment model would be required to provide for all of the scenarios programmed into the KBS 
world database for contingency training in mission operations. Heuristic behavior of the KBS would 
also need to be accounted for by the environmental model. 

4 3 3  Robotics Technology/Telerobotics 

Simulation of advanced telerobotics operation may be the most challenging SSTF simulation 
problem. The goal of the automation and robotics initiative is to help relieve the Freedom Station 
crew from many of the demanding EVA and time intensive operations associated with station 
assembly and maintenance. To facilitate meeting this objective, hooks and scars are being 
incorporated in the station design to accommodate automation capabilities as they become available. 
Anticipated Freedom Station automation and robotics capabilities will utilize machine intelligence, 
sensory aided perception, and advanced man-machine interfaces. The robotics technologies planned 
for incorporation in Freedom Station pose several potentially formidable simulation challenges, 
particularly in the visual system area. 

A flexible robot control structure has been identified for utilization in the Flight Telerobotic 
Servicer (FB) and other Freedom Station robotic systems. This scheme, known as the NASA 
Standard Reference Model for Telerobot Control System Architecture (NASREM) provides for 
varying levels of system autonomy and operator control regarding manipulator operations. Figure 
4-3 indicates how the NASREM hierarchy would map into the DMS architecture in terms of system 
interfaces and levels of operator/manipulator interaction. The NASREM architecture provides for 
operator control over robotic operations via job oriented task commands (“remove & replace Orbital 
Replacement Unit (ORU) #2 in forward service bay”), object oriented E-move commands (“move 
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<object> from <source> to <destination>"), or by manual control of arm and end effector 
movements. To accomplish these operations safely and effectively, the operator will need extensive 
real-time queuing of the task situation. The operator must be able to accurately perceive what is 
happening, make cognitive decisions concerning the task process, and effect control over the task 
situation. Advanced display and control technologies are planned for aiding the operator in utilizing 
the NASREM configured robotic system, from within the station and from ground based controller 
workstations. The following sections discuss several technologies associated with robotics 
technologies that are challenging for SSTF simulation. These include predictive display and control, 
and Computer Aided Design (CAD) / Computer Aided Engineering (CAE) correlated sensory 
perception. 

433.1 Predictive Display & Control 

Remote operation of space based robotic manipulators from a ground based workstation is 
a difficult technical challenge due to the inherent time delay in the round trip transmission of data 
from earth to space. Delays of as much as 2 seconds are anticipated for ground based manipulator 
control loops transmitted to the station via the Tracking and Data Relay Satellite System (TDRS) 
geosynchronous relays. Research at the Jet Propulsion Lab (JPL) has indicated that control loop 
delays above 500 ms cause manipulator operators to fall into a move and wait strategy for 
accomplishing task objectives, resulting in very poor task performance. To overcome the time delay 
problem, research in predictive display and control technologies is being performed to increase the 
effectiveness of teleoperated control schemes. By executing a macro simulation of the robotic system 
within the ground based workstation in response to input commands, a real-time display can be 
generated that predicts the behavior of the space based manipulator. Researchers at JPL believe that 
by coupling this predictive simulation with CAD/CAE data regarding the object being remotely 
manipulated, a total manipulator/object signature can be computed in real-time that is sufficient to 
drive interactive 3-D graphics displays with correlated force feedback signals for the hand controllers. 
The CAD data would provide the spatial geometry and physical characteristics data needed to 
determine when end effector contact is achieved. The CAE data will allow the computation of the 
inertial response of the object to a given input force. Real-time sensor data from the manipulator 
in space would then be overlaid with the virtual graphics display to provide operator overall 
awareness of the task situation. This predictive display and control technology, in addition to 
providing a solution to the ground control time delay problem, could also be utilized on board 
Freedom Station to provide an embedded training capability that would permit crew members to 
remain proficient at robotic operations, without having to exercise the actual robotic equipment. 

4.33.2 CAD/CAE Correlated Sensory Perception 

Autonomous robotic operation at the NASREM task or E-move level requires that the 
manipulator be capable of "seeing" and "feeling" its way throughout the performance of the task. 
Research is currently being performed in the integration of visual imaging sensors and laser range 
fiiders with CADjCAE databases to increase the robots' ability to maintain situational awareness 
of the task space. By correlating real-time task imagery and ranging data with the CAD/CAE 
database, the manipulator will be able to navigate through the task space with a higher degree of 
confidence than if driven by sensor data alone. This concept is analogous to the Terrain Profile 
Matching (TERPROM) approach for passive terrain avoidance utilized in some tactical fighter 
aircraft. By correlating radar altimeter readings and periodic position fixes with an on board digital 
map of the route being flown, the TERPROM equipped aircraft is able to anticipate and react to 
terrain contours and hazardous obstacles along the aircraft's flight path. The correlation of on board 
data with sensor data will allow the robotic manipulator to anticipate collisions or unsafe operating 
conditions in a manner similar to that of the TERPROM navigation system. This technology 
presents a challenging simulation task for the SSTF. If the CAD/CAE correlation is mechanized 
within the upper layer of the DMS environment (Le. within the SDPs), then the Visual Scene 
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Database (VSDB) will need to be directly correlated with the Freedom Station CAD database to 
ensure realistic training scenarios. If the mechanization occurs in the bottom DMS layer (within 
an embedded processor), then other alternatives may be available, dependent upon whether the 
embedded processor is stimulated or functionally simulated. Correlation of the visual scene with the 
robot flight software is a challenging simulation task, because simulator VSDB’s descriptors for man- 
made objects (i.e. aircraft, vehicles, etc..) are typically entered into the database through manual 
modeling techniques. The resolution of these models is also typically very loose. VSDB/CAD 
correlation will require precise matching of the visual database models with the CAD object 
descriptions. This correlation will be particularly critical if pattern recognition flight software is 
executed within the SSTF. Automatic generation of visual scene database models based on CAD 
data would be an ideal solution to this problem, 
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5.0 Enabling Simulation Technologies 

Development of the SSTF concept will call for many decisions to be made regarding concept 
implementation. Many challenging simulation problems are anticipated in implementing the SSTF 
concept that must be solved by effective, efficient, and enduring technical approaches. It is in 
NASA’s best interest to seek an SSTF architecture that offers maximum flexibility, scalability, and 
adaptability to change. Pursuit of these implementation objectives will better position the training 
facility for accommodating new missions, new on-orbit technologies, and new user requirements over 
the anticipated life of the Space Station Freedom program. The information in the following sections 
is offered to SSTF planners and decision makers as a broad look at the most critical technical issues 
surrounding SSTF concept implementation. 

Several enabling simulation technologies hold promise for answering the challenges posed by 
the variety of simulation problems anticipated for the SSTF. These include conceptual technologies 
that offer life cycle advantages through modular systems definition techniques, architectural 
technologies that provide flexible and adaptable system configurations, software technologies that 
support the architectural technologies, processing technologies that allow simulation of advanced 
automated systems, and visual system technologies that, in conjunction with the architectural and 
software technologies, provide an overall integrated training environment for highly transferrable 
crew training. The pursuit and application of these technologies may better enable the SSTF to 
weather the evolutionary changes which challenge the initial system design. But these technologies 
must not be taken at face value. Many technical issues and considerations must be accounted for 
when implementing a given technology. The following discussions are directed at uncovering some 
of these issues, so that they may be more closely examined in further detail. 

5.1 Conceptual Technologies 

Several new trends in simulation system definition offer distinct advantages over traditional 
methods in the design of complex, multi-crew training systems like the SSTF. These concepts help 
assure that training simulation devices are designed as modular, expandable, and flexible systems. 
Application of these conceptual technologies in the SSTF design process will allow the SSTF 
configuration to accommodate hooks and scars necessary to provide training support for evolution- 
ary automation and robotics technologies, minimize the potential problems involved in integrating 
with the SMTF, accommodate a variety of diverse payload technologies, and ease the tasks associated 
with mission-to-mission reconfiguration. Technologies that play a key role in this front-end system 
engineering process include modular simulation concepts, distributed processing concepts that support 
modular simulation, and the concept of integrated environmental modeling. These goals can be 
achieved through the application of front-end systems engineering analysis which categorize and 
quantify the simulation system’s logical, physical, and functional processes. 

5.1.1 Modular Simulation Concepts 

The concept of modular simulation focuses on reducing the complexity of simulator systems 
by logically and physically compartmentalizing the design into independent, well defined subsystems. 
It is a building block approach that describes the overall simulation problem in terms of separable 
tasks. These tasks are then allocated to functional simulation entities with well-defined interfaces 
and internal processes. The functional process is then allocated to physical hardware and software 
components. The modular design approach is based on fundamental systems engineering principles 
that are applied specifically to configure real-time simulation systems. Adherence to these principles 
provides clear development paths and provides for graceful growth capabilities as the simulation 
requirements are expanded. 
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The front-end systems engineering approach is intended to prevent the integration, 
maintenance, and upgrade problems experienced with simulation and training systems currently in 
the field. Industry standard practice has been to settle on the physical design of the simulation 
system prior to the identification of the overall tasks and functional processes that the system needs 
to perform to support achievement of training system objectives. It is very important to consider the 
evolutionary requirements of the simulation system early in the system conceptualization process. 
History has shown that centering a training system design around specific computer equipment or 
proprietary software components can be very problematic in terms of life cycle cost, system 
expandability, and flexibility in meeting new requirements. By dividing the logical simulation 
processes based on interface considerations and separating them from the physical environment, a 
system configuration can be established that is easy to understand, implement, and m o d e .  Figure 
5-1 shows an example of how space station system simulation requirements can be logically allocated 
to simulation processes. Each process within the simulation environment performs a function 
required to meet training requirements. Once each process is defined in terms of functions and 
logical interfaces, the process may be easily allocated to hardware and software. 

Real-time system oriented Computer Aided Software Engineering (CASE) concepts are 
emerging that support the principles of modularity in the systems definition process. These tools will 
allow the system designer to identify processes which are inherently parallel, process timing 
synchronization requirements, and data flow considerations early in the design phase. This capability 
allows system designs to be configured that specify and optimize the best physical computer resources 
needed to perform the simulation task. CASE concepts for real-time simulation are discussed further 
in Section 5.3. The modular simulation approach offers an alternative to the myriad of problems 
caused by the premature selection of specific computer systems prior to complete system 
requirements identification. 

5.1.2 Distributed Processing for Modular Simulation 

Distributed processing concepts involve allocating simulation functions to individual processor 
environments. A processor environment can be thought of as a collection of individual computing 
units that are grouped to allow collective processor-to-processor communications. Each computing 
unit contains a CPU, local memory, and 1/0 capability. Computing units are interconnected via an 
inter-node link to form an integrated computing node that is managed by a node controller. 
Computing nodes are connected by an intra-node link to form a distributed computing system. The 
distributed processing approach divides the overall computation load into independent processes that 
may be performed in parallel. Individual node controllers allow the computer resources to easily be 
configured to support specific applications. A distributed architecture can be dynamically configured 
to support independent applications (part task training) or a single massive application (combined 
training). This approach has numerous advantages over the single virtual machine approach 
commonly used for real-time simulation. 

The single computer approach is typically represented by a master central processing unit 
(CPU) and several slave CPUs that communicate with each other through shared memory. This 
configuration performs as a single virtual machine since only one CPU may access shared memory 
at a time, resulting in a serial execution environment. This approach is also not very scalable in 
terms of processing power expandability, since only a fixed number of CPU’s may share the 
computer’s main bus, and only the master CPU is capable of handling I/O. To overcome these 
limitations, the simulation industry is developing distributed processing concepts that support the 
principles of modular simulation and provide flexible, scalable computer resources. The distributed 
processors may be interconnected through either loosely coupled networks or tightly coupled memory 
linkages. Issues associated with each of these interconnection methods are discussed in Section 5.2. 
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Figure 5-2 describes the differences between the typical simulator computer system and the 
distributed simulation system. The monolithic approach typically centers around a proprietary 
internal bus and is designed to support centralized, local applications that are easily handled by a 
single computer. The distributed approach relies upon grouping computing unit to form computing 
nodes. The key to the distributed architecture is the processor-to-processor linkage (intra-node bus 
and inter-node bus). Several technologies discussed in section 5.2 allow independent processors to 
communicate reliably and predictably at real-time speeds. The computing units may be easily 
interconnected and sized to form computing nodes that support dynamic, large scale applications that 
often cannot be handled by any one computer. 

The strength of the distributed processing approach is that each individual computing node 
may be uniquely sized to match the simulation process that has been allocated to it. As the 
simulation requirements expand and mature, additional nodes can be added or easily re-sized to 
accommodate the requirements. In addition, the simulation system configuration is better able to 
support advanced simulation requirements by matching process to processor. The distributed 
approach also provides a growth path for computer technology migration. As more capable real- 
time processors emerge, they may be swapped for existing processors without seriously impacting the 
simulation functional allocation. 

5.13 Integrated Environmental Modeling 

Integrated environmental modeling refers to a centralized approach to simulating external 
processes. An example of an external process is the characteristic behavior of the earth as a planet. 
A corresponding internal process would be the sensing of an earth attribute by an embedded space 
station system. The concept of integrated environmental modeling focuses on the definition of a 
unified environment that may be sensed in a consistent manner, independent of the sensor type. The 
concept is illustrated in Figure 5-3. In the non-integrated approach, each sensor models its own 
world, totally independent of other sensors and other environmental effects. Non-integrated 
environmental models are difficult to understand and maintain, and may result in inconsistent cues 
to the crew. Integrating the environmental model as a separate simulation function ensures that all 
cues conveyed to the crew will be correlated and provides for the modular incorporation of new 
sensors as they become available. 

5.2 Architectural Technologies 

Advanced computer architectures offer flexible alternatives for meeting the demanding and 
evolutionary simulation requirements posed by the SSTF. The concept objective is to configure a 
real-time Simulation environment that can evolve and grow gracefully as the space station training 
and operating requirements expand to include new missions, payloads, and embedded system 
capabilities. The core computing resources utilized within the SSTF must be based on architec- 
tural technologies that have a bright and predictable future, offer a clearly defined growth path to 
accommodate increasing performance requirements, and promise to be fully supported now and in 
the future by the commercial computer industry. Figure 5-4 identifies the current operational 
computer system concept in terms of functional interfaces and SSTF connectivity required to support 
multiple, concurrent and independent training sessions. Many technical issues must be considered 
in determining the configuration for implementing the host simulation computer system concept. 

The information presented in this section is designed to provide decision support for the 
assessment of candidate architectures that are capable of fulfilling the real-time computer resource 
requirements of the SSTF. The architectural technologies considered for analysis here are important 
to the current and future trends in real-time simulation oriented computing systems. These 
technologies have been grouped according to the method utilized to implement the specific capability 
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that the technology offers. These groups are: loosely coupled networking methods, tightly coupled 
memory linkage methods, and processor selection. A number of issues are presented for evaluating 
each of these technology areas. 

The SSTF is characterized by a diverse set of computing needs representing a wide range of 
real-time and batch requirements. In addition, the integrated SSTF must provide connectivity to 
several other training devices to fully implement training goals ( i.e. the Shuttle Mission Training 
Facility-SMTF, Neutral Buoyancy Lab, Mission Control Center, etc..). The need for a modem Local 
Area Network (LAN) is clear but there are a number of issues which determine their effectiveness 
in a given situation. In a complex computer system containing several local computing nodes with 
requirements for the various nodes to communicate with each other, the system should be analyzed 
on at least two levels: the tightly-coupled, local level and the loosely-coupled, global level. 

There are several important issues associated with selection of a communication method when 
dealing with real-time applications: scalability, error detection and recovery, overhead, and 
performance. Scalability deals with issues of flexibility and the ease of expansion to accommodate 
changing communications requirements. This is one of the most critical features needed by a 
complex system with unknown growth needs such as the SSTF. Performance issues are significant 
because communication speed will affect frame processing time when the processes are distributed 
over a network. Determinism (of message propagation time) is also a critical performance issue. 

To date, a front-end training analysis has not been performed to determine precise training 
objectives and curriculum for the SSTF. In order to size the communication requirements of a 
complex system, one must be able to estimate the peak data communications rates for each 
communications path using average message size, message density, system overhead and bandwidth, 
These estimates will not be possible for SSTF until design options and the training requirements are 
stabilized. This makes the selection of scalable and open standard architectures a most important 
factor. 

52.1 Loosely Coupled Networking 

Loosely coupled networking schemes allow dissimilar processors to communicate with one 
another according to a standard interface protocol. This protocol can be separated into physical and 
logical layers of communication such as defined by the International Standards Organization (ISO) 
Open Systems Interconnect (OSI) standard for use in LANs, or by integrated protocols such as VME 
bus and MultBus that standardize the signal lines and interface modules required for processor-to- 
processor communication. VME bus interfaces also offer a means of tightly coupling processors and 
devices on a one-to-one basis. 

LANs are used to connect a number of computer systems (global) for the purpose of sharing 
or exchanging data. Data is organized into messages or message packets for transmission, with the 
transmission speed being dependent on the type of physical transmission line used. For example, a 
twisted-pair wire can transmit up to 1 Mb/s, while thin or thick coaxial wire can attain rates above 
10 Mb/s, and fiber optics cables can extend into the gigabit per second range. 

There are several popular LANs which have received wide industry support and are formally 
documented by various international standards organizations. Loose coupling through LANs is 
characterized by the transfer of message packets, flexible configuration options, and the ease with 
which nodes with different vendors’ products can be connected. Processors of varying architectures 
and capabilities that accept the LAN protocol can be connected over fairly large distances ( one to 
two Km) and repeaters are available which increase these limits. They tend to be very scalable but 
can have dramatic performance degradation when overloaded. 
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Communications for complex distributed real-time systems must form the backbone upon 
which predictable, stable, scalable system solutions are built. To be successful, the real-time 
communications must be able to predictably satisfy individual message level timing requirements. 
In a nonreal-time setting, it is sufficient to verify the logical correctness of the communication; 
however, in a real-time setting it is also necessary to verify timing correctness. Timing correctness 
refers to ensuring the ability to schedule synchronous and sporadic messages as well as ensuring that 
the response time requirements of asynchronous messages are met. Ethernet, for example, has very 
low predictability of message transmission and arrival times because of the unpredictable increase 
of message collisions and retransmission as the network loading increases. 

TREE 

Each computing node is connected to the LAN by interface modules which implement a 
protocol: the rules which determine the format, speed, and addressing for data traversing the LAN. 
Computing nodes can be connected to LANs in a variety of ways: rings, stars, trees, busses, and other 
topologies as shown in Figure 5-5. 

STAR 

R I N G  
S t a t i o n s  

I 

Modes > S t a t i o n s  

Figure 5-5 
Typical LAN Topologies 

52.1.1 Ethemet 

Ethernet (IEEE 802.3 standard), is a 10 Mb/s coaxial cable bus using baseband modulation 
and implementing a "carrier sense multiple access with collision avoidance detection" (CSMA/CD) 
protocol in hardware. Ethernet has very low predictability of message transmission and arrival times 
because of the unpredictable increase of message collisions and retransmission as the network 
loading increases. These collisions have been shown to be exponentially increasing with respect to 
bus loading and can begin to have an effect at relatively low loading levels (about 20%). It is a very 
scalable network, but its use is questionable where high speed, deterministic, hard deadline 
communications are required. 
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5.2.12 Token Ring 

The Fiber Distributed Data Interface (FDDI) fiber optic cable being considered for the 
Freedom Station global network provides relatively inexpensive connectivity with transmission rates 
of 100 Mb/s and sustained transfer rates of 80 Mbjs. FDDI (ANSI ASC X3T9.5 standard) is a 
counter-rotating double ring token passing arrangement, as shown in Figure 5-6. 

Token bus and token ring networks have a somewhat better deterministic performance than 
other LAN structures and are very scalable. Priority schemes, built into the token’s data structure, 
allow message priority to be easily implemented. Heavy loading and turn-taking (resulting from 
token passing) are effectively handled by this priority system. The current network trend is toward 
increased use of Time Domain Multiplexing (TDM) implemented by a cyclical executive such as the 
token-passing scheme within FDDI. Research has shown that as the number of independent 
communicating tasks increases, the uncertainty of message timing also increases. Also, reliability and 
availability issues are driving systems to become increasingly reconfimrable, which exacerbates the 
problem of determinism. The problem of non-deterministic networks is currently the focus of 
scheduling theory research activities and it seems that currently available products are not particularly 
well suited (theoretically) to the task. 

Figure 5-6 
FDDI Token Ring 

52.13 W E  Bus and Multibus III 

VMEbus and Multibus II are standard parallel busses which have popular support as local 
network interfaces. Each has a maximum bandwidth of about 40 MB/s (megabytes per sec) but have 
very different operational philosophies. Both are capable of processor independence, allowing 
computers from different manufacturers running at different clock speeds to operate on the same 
bus. Multibus has gained considerable favor in industrial automation applications while VMEbus has 
a larger installed base and is more popular in scientific real-time applications. Either bus would be 
a satisfactory interface for localized communications within the SSTF. 
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Multibus I1 uses a message-passing protocol. Message packets contain source and destination 
addresses as well as several bytes which can be used to describe up to 255 virtual interrupt sources 
or destinations. The message passing is usually handled by a special coprocessor rather than the 
board's main computer and eliminates the need for dual ported memory. Multibus I1 is synchro- 
nous and multiplexed which (according to some authorities) provides higher reliability. Multibus 
cards must synchronize to the bus clock rate of 10 Mhz for transmission, and if a clock edge is 
missed, a wait state of 100 nsec is needed to catch the next clock pulse, potentially degrading 
performance. Bus arbitration is distributed among several "bus masters" who arbitrate for bus 
services based on a prioritized ID assigned by a central services module. 

VMEbus is asynchronous and non-multiplexed, using seven prioritized hardware interrupt 
lines to apportion tasks among multiprocessors. The asynchronous bus allows each processor in a 
multiprocessor system to transfer data at its fastest possible rate. VMEbus' arbitration method is 
"centralized" in that one global arbiter board, slot one of the card cage, handles bus-access requests 
over dedicated, daisy-chained bus-request and bus-grant lines to the other boards' requester circuitry. 
VMEbus allows four priority levels and three modes: prioritized, round robin, and single level. 
Prioritized arbitration assigns the bus to the board driving the highest priority bus-request line. In 
round robin, the arbiter assigns access on a rotation priority basis, from highest to lowest. Single 
level arbitration serves only one priority, relying on the daisy-chained bus-grant lines to determine 
the order in which boards get access to the bus. 

5.2.1.4 Real-Time Networks 

Network communication schemes are beginning to emerge that provide deterministic message 
passing communications between dissimilar processors. One real-time network supplier (SYSTRAN) 
offers an innovative approach known as the Shared Common Random Access Memory Network 
(SCRAMNet) that combines the benefits of tightly coupled shared memory linkages with the open 
system flexibility provided through loosely coupled communications methods. The SCMMNet 
system consists of a set of host interface cards connected by fiber optic cable. The host interface 
cards plug in to standard card slots provided for computer interfaces such as 9U sized VME, 
MultiBus 11, and Q-Bus. Memory located on the interface card is mapped into the host computer's 
memory, and data changes to this memory area are detected and transmitted to the other network 
nodes. This approach tends to eliminate unnecessary bus traffic. By not implementing complex 
message passing protocols, and through use of fiber optic cable, SCRAMNet is able to achieve 
message transmission times of less than 7 microseconds over distances exceeding 700 meters. The 
major limitation of the SCRAMNet scheme is that currently, only 512 K bytes of shared memory can 
be supported between network nodes. Current SCRAMNet applications utilize between 2 and 10 
network nodes. 

52.2 Tightly Coupled Memory Linkage 

Processor-to-processor communications utilizing tightly coupled memory linkage methods 
allow compatible processors to almost instantaneously transmit and receive data. The tightly coupled 
memory linkage method avoids the need for data format and protocol compliance by promoting 
direct memory-to-memory read and write capability. There are many very fast vendor-proprietary 
bus structures available that perform very well on that vendor's equipment. They are often limited 
to a short total length (up to a few hundred feet) with speeds of 20-50 MB/s. 

Use of proprietary interconnect busses is f i e  for use within a localized (functional) 
computing node for distributed processing (intra-node) as long as it can grow to meet the localized 
functional need. However, all localized computing nodes which require widespread communications 
within the SSTF (internode) should also support interfaces which have an open system architecture. 
These open architectures are those which are backed by industry standards organizations (e.g. ANSI, 
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IEEE) and have received wide support from the computer manufacturing industry and third party 
suppliers. 

5.2.2.1 Broadcast Memoly 

The broadcast memory method for tightly coupled processor communications involves the 
broadcasting of shared memory areas between all processors accessing a common bus. Whenever 
a processor writes to a location in its copy of shared memory, the bus then "reflects" this memory 
area to all other processors accessing this same shared memory region. This approach eliminates the 
bottleneck caused by multiple processors attempting to access a central shared memory area. 
Multiple broadcast memory buses can be utilized to form a matrix of computing nodes capable of 
tightly coupled communication. 

Encore/Gould offers an innovative Reflective Memory design in their Concept 32/2000 
product line. In addition to a high speed local memory bus and an external Sel BUS, the reflective 
memory bus allows write-only memory updating to all connected processors over an electrically 
passive bus. The currently available reflective memory bus has a 26.6 MB/s bandwidth, but the 
bandwidth will be doubled by product enhancements planned for 1990. Electrically, the reflective 
memory bus connects to local memory through the CPU card but does not impact CPU performance. 
Up to eight processors can be connected by the reflective memory bus, and in turn, each of the eight 
processors can, by a multi-drop connection, reflect memory to another string of eight processors, 
forming an 8x8 matrix of processors connected by reflective memory as illustrated in Figure 5-7. 
Reflective memory is very deterministic with a worst-case propagation delay of about one-half 
microsecond. Additional hardware lines offer cross-coupled interrupts among processors for timing 
synchronization. 

5.2.2.2 Shared Memory 

Shared memory is the traditional simulator architecture that uses a memory bank to which 
several processors can read or write, as illustrated in Figure 5-8. Key variables, which are of interest 
to more than one processor, are assigned to this common memory. This is a common technique 
found in many of today's simulators. Information transfers are fast because no packing, formatting 
or message software is involved, although some wait states are likely when memory contentions 
occur. Scalability of shared memory systems is limited and they are usually proprietary to a 
particular vendor. As the number of attached processors increases, the longer each must wait to be 
granted a memory access. Typically, all processors must be in close proximity to the shared memory 
resource, and complicated software semaphores must be used to ensure coherent data access. Shared 
memory can also be a single point of failure within the system. 

53.23 Crossbar Memory 

Crossbar memory is a linkage technique that utilizes a separate bus for each interconnected 
processor, so that each processor has a direct communication path to every other processor, as 
illustrated in Figure 5-9. The crossbar approach provides for a very scalable architecture, with 
constant memory access times independent of the number of interconnected processors. Both 1/0 
and processing can be performed in parallel. 

Bolt Beranek and Newman, Inc. offers an innovative crossbar memory system known as the 
TC200 System which uses a "Butterfly switch" to provide efficient and transparent access by each 
processor to all locations in memory, whether local to a processor, remote on another processor, or 
external on a disk or tape. Every processor is connected to the switch via an 80 MB/s, 32 bit Tbus. 
The switch paths are eight bits wide and provide 38 MB/s bandwidth and allow multiple remote 
memory accesses to occur in parallel. The switch is also modular, providing an additional 38 MB/s 
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Typical Broadcast Memory Configuration 
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in communications bandwidth with the addition of each cluster of eight processors. The architecture 
is very scalable and supports up to 64 parallel processors, with growth capability to accommodate up 
to 504 processors. 

5.23 Processor Selection 

Today, computer system designers have a wide variety of processors (CPUs or board-level 
products) from which to choose. Some of the CPU designs are commercial products with open (i.e. 
non-proprietary) and well-documented features, while others are considered proprietary by the 
computer manufacturer. In today’s market, where the total life span of a CPU is less than 8 years, 
chip designers and system integrators are very careful at the onset of a new product design to build 
in an orderly grow path for the product. Proprietary CPUs are designed with a particular market 
or application niche in mind and frequently offer a speed advantage in that area when compared 
tochips designed for wide distribution. The availability of software is generally better for systems 
based on standard designs although proprietary designs are well supported in the target application 
area by the manufacturer through intemal development and arrangements with third party OEM 
software houses. 

5.23.1 Processor Architectures 

The majority of today’s computer architectures are based on the classical von Neumann 
scheme. This paradigm includes a global addressable memory which holds both program and data 
objects, and a program counter which holds the address of the next instruction to be executed. The 
program counter is implicitly updated by machine instructions to provide the machine with a 
sequence of instructions to execute, implying a single locus of control, a fundamental bottleneck of 
the von Neumann model for parallel processing. 

The most serious problem with any form of memory sharing in a multiprocessor machine is 
the underlying execution model, which implies a global, updatable object-oriented memory. It is 
common for processors to compete for the right to updqe a memory location. The program 
fragments, which execute in parallel and share data, must be synchronized by operations such as test- 
and-set, semaphores, or message-based primitives which require considerable overhead and reduce 
performance. There are other fundamentally different schemes which are beginning to show success 
in certain application areas, some of which are necessary to fulfill the diverse computing 
requirements of SSTF. These are discussed in following sections. 

5.23.2 Data Flow Machines 

Data flow machines deal only with values and not addresses (of values). The basic operators 
produce a value which is used by other operators. The model has no instruction counter: an 
instruction is enabled in and only if all the required input values have been computed. Enabled 
instructions consume input values, execute, and produce sets of output values which are sent to other 
instructions that need these values. An instruction in data flow has no other side effects, and a 
language based on data flow concepts does not introduce sequencing other than the ones imposed 
by data dependencies in the algorithm. In principle, it is possible to expose all of the parallelism in 
a data flow program. 

Using this concept, it is possible to develop very powerful and deterministic real-time 
processes known as event-driven execution. Software modules are only scheduled for execution when 
a module input changes, thus signalling the algorithm to compute a new output value(s). This 
removes the system from the high overhead burdens of continuous polling schemes to detect when 
a module requires execution. 
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5.233 Parallel Processing 

Multiprocessing is a platform architecture strategy in which two or more processors perform 
as one integrated system. True parallel processing is achievable on such an architecture and is 
characterized by: 

e A high speed memory bus to a shared memory area. Since all processors are typically 
in the same equipment rack, the bus is physically short and can provide high 
bandwidth. 

A shared 1/0 bus allowing all processors access to a common set of peripheral 
equipment. 

e An operating system which dispatches tasks from a central dispatch queue to 
processors in an available processor pool without bottlenecks associated with 
master/slave relationships. All processors are available for all jobs. The classical task 
of load balancing real-time tasks is eliminated. 

A scalable configuration, capable of easily accommodating additional processors. 

Language compilers must be capable of identifying and exploiting the parallelism inherent in 
applications, splitting the identified code segments into "parallelized" packets. There are some cases 
in which execution order of subroutines or packets is extremely important. For example, in 
aerodynamic models it is critical that velocity and acceleration components be calculated from data 
collected within the current data frame. The system must have some means of assuring that tasks 
will execute within a required timing window and that tasks dependent on results of other tasks' 
calculations observe the proper dependency relationships. At the present time, the compilers and 
toolkits required for production quality parallel processing environments are still evolving and it may 
be some time before they are found in wide use. 

5.2.4 Reliability and Maintainability 

The architecture of the computer system plays an important role in determining the 
availability (fault tolerance) of the computer resources for operations and the speed with which 
problems may be isolated so that the system may be repaired and returned to operational status. 
Reliability and maintainability issues are key items for consideration in the SSTF host computer 
complex concept because of the high level of system availability required to support crew training. 

Computer system designs that rely upon a centralized mainframe type architecture are 
susceptible to loss of operational capability when a key component (such as the shared memory) fails. 
Although the probability of a critical failure occurring is small due to the minimum complexity of the 
mainframe architecture, when a failure does occur it usually brings down the system due to the high 
degree of component integration. 

A distributed multi-computer architecture exhibits greater complexity than the centralized 
architecture due to the greater number of components that make up the distributed computer system. 
Even though expected reliability is reduced due to the greater number of system components, system 
availability of the distributed architecture can be greater due to the inherent advantages of the 
functional process distribution. The distributed approach allows for the allocation of spare computing 
units within each computing system node. Since each computing unit is under software control of 
the node controller, a high degree of configuration flexibility is provided. If a failure occurs that 
results in the loss of a computing unit, the node controller can easily reassign a spare computing unit 
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to perform the functions of the failed unit. Similarly, a spare node controller can be assigned the 
functions of a failed node controller. A failed computing unit or node controller can be electrically 
switched out and quickly repaired or replaced without affecting the overall operation of the computer 
system. This capability is made possible through the use of passive inter-node and intra-node 
communication links. Passive transmission methods (i.e. fiber optic cable) allow the failed computing 
unit to be bypassed on the inter-node bus without affecting the remaining computing units within the 
node. The capability to semi-automatically recover from system faults without impacting the 
operation of the total system allows the distributed multi-computer approach to exhibit high levels 
of availability, even though the architecture is complex. 

5 3  Software Technologies 

Emerging software technologies are becoming commercially available that support the 
architectural technologies discussed in Section 5.2. These new technologies, centered around industry 
standards for programming languages, operating systems and the interaction between the two, offer 
the promise of solving many of the costly operations and maintenance problems related to the use 
of complex, customized, and often proprietary simulation solutions that are in current field use. To 
bring these promises to practice, though, many technical issues associated with these software 
technologies must be identified and addressed. Successful SSTF computer complex concept 
implementation will require careful planning with regard to the impact of these issues on the chosen 
computer system hardware/software configuration. The following discussion is intended to provide 
a high level overview of important issues associated with Ada language simulation environments, Ada 
compatible real-time operating systems, and real-time simulation development tools. 

53.1 Real-time Ada 

Several deficiencies have been identified by industry regarding the ability of ANSI/MTL- 
STD-1815A compliant Ada to perform in hard real-time application environments. These 
deficiencies include the inability of Ada to support explicit task scheduling, dynamic task 
prioritization, task blocking, or strict time slice management. Other known problems are caused by 
nondeterministic real-time interrupt handling via task rendezvous entries, and the possibility of task 
priority inversion due to the way in which Ada handles task synchronization. These problems have 
resulted in several different approaches undertaken by industry to allow the Ada language to be 
utilized effectively in hard real-time applications. 

One approach taken by Ada vendors (DDC-I) is to provide source code changes that support 
hard scheduling along with their validated Ada compiler. This approach is characteristic of the "make 
Ada work now" method that suppliers have pursued to meet the demand for real-time Ada. This 
approach is not acceptable in many circumstances because it violates the Ada standard and requires 
that a special waiver be granted by the government sponsor. This method results in Ada software 
that is not portable and does not conform to the established standard. 

Another path to a real-time Ada environment offered by industry is that of a real-time 
Operating System (OS) kernel that is custom tailored to support ANSI/MTL-STD-l815A without 
modifications. The OS overcomes the known Ada deficiencies by implementing real-time executive 
functions through packaged interfaces to the Ada language. The Ada tasking model is not utilized. 
This approach allows run-time simulation functions such as time slice management, inter-process 
communication, and dynamic process prioritization. This approach may be unacceptable due to the 
custom nature of and lack of standardization among operating systems that offer these capabilities. 
Another deficiency is that a standard does not currently exist for the OS to Ada language interface. 
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In response to these issues and the difficulty experienced within industry in developing real- 
time Ada systems, the Ada Joint Program Office (-0) is pursuing a revision to ANSI/MIL-STD- 
1815A to include incorporation of real-time environment features. This initiative, known as the Ada 
9X program, seeks to resolve known problems by offering run-time extensions to the language in a 
way that will minimize the impact to existing compilers and installed software systems. This program 
is very controversial and is expected to drag on past the planned September 1990 release date. If 
implemented, the Ada 9X initiative offers the possibility that real-time Ada may be run "bare 
machine," without the need for an OS kernel to implement executive functions. This capability offers 
significant advantages since reliance upon custom software for a real-time environment would be 
virtually eliminated. An alternative approach, promoted by the Software Engineering Institute (SEI), 
is to define a standard for a run-time kernel that supports the current ANSI/MIL-STD-l815A. The 
kernel would provide all of the real time features, and would also eliminate the need for a custom, 
proprietary OS kernel to support real-time Ada usage. 

53.2 Operating System Functions 

Operating system functions are critical in determining and controlling real-time simulation 
performance. Typically, real-time operating systems support dynamic process manipulation, inter- 
process communication, task scheduling, and time slice management. Dynamic process manipulation 
allows the OS to control task prioritization, blocking/removal of tasks from execution, and task 
creation. Inter-process communication controls the way in which tasks access memory. Some OSs 
implement resource locking to allow only one task at a time to access given memory locations. Real- 
time task scheduling is implemented on a cyclical, frequency synchronized basis. This approach 
ensures rigid task queuing for deterministic system behavior. To enforce simulation determinism, 
the OS may also manage the time slice events allocated for each process. The OS effectively 
manages the run-time environment by monitoring the time slice performance and manipulating tasks 
to ensure fault tolerance and real-time performance. 

Efforts are currently underway to define and standardize the interfaces between an operating 
system and the Ada language. AJPO is working on defining the run-time interface to the OS through 
the Ada Real-time Environment Working Group (ARTWEG). The Army is currently working on 
an IEEE standard (P-100 3.5) that will define the interfaces between POSIX and Ada. Portable 
Operating System for Unix (POSIX) hopes to standardize the interface between an application and 
an operating system. POSIX currently applies to the UNIX, VMS, and OS/2 operating systems. 

5 3 3  Ada Programming Support Environments 

Ada programming support environments provide the tools and rules that programmers will 
use during software development and test. The SSE contractor is providing the APSE that will be 
utilized by the SSTF. The SSTF is just one of the many target users of the SSE tools and rules, and 
as such, the special APSE needs for simulation application development may be overlooked. The 
following discussion is intended to identify some of the issues surrounding APSE usage for real-time 
simulation software development. 

533.1 Simulation Oriented CASE 

Many Ada programming support environments exist, each offering different types of CASE 
tools. Industry standard CASE interfaces, methodologies, and information formats do not yet exist. 
The National Institute of Standards & Technology is currently working to define a government 
standard for an Integrated Software Engineering Environment. This standard is intended to promote 
commonality among the various CASE tools oriented toward embedded system software 
development. Many of the special needs of real-time simulation are not addressed by current CASE 
tools. CASE tools are needed for simulation that allow the software engineer to model and validate 
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designs based on functional and physical real-time requirements. To provide this capability, CASE 
tools need to incorporate real-time oriented modeling notations and timing flow considerations that 
address distributed, parallel system operations. Without these important real-time features, CASE 
usage will not offer the expected productivity benefits, and may actually impede the real-time 
software development process. 

5334 Real-time Debugging Tools 

The APSE environment must provide for the capability to quickly debug and correct real- 
time simulation errors and run-time problems. The real-time debugger should not be intrusive, in 
that some APSE debuggers can potentially alter the behavior of real-time simulation programs. In 
addition to monitoring program performance symbolically (i.e. by symbol names rather than machine 
addresses), the debugger should be capable of providing graphic information to the user for memory 
analysis, symbol data logging, and processor load balancing. These features are especially critical for 
multiprocessor environments that are tightly coupled through interconnected memory. 

Ada exception handling constructs are very limited due to the small number of predefined 
exceptions identified and the wide range of conditions that cause these exceptions to be invoked. 
These limitations reinforce the need for powerful run-time debugging tools. 

5.4 Processing Technologies 

In addition to performing core simulation computing tasks, the SSTF computer complex will 
need the flexibility of accommodating many different types of processing technologies. Training 
system effectiveness will stem from the SSTF's ability to create an artificial reality that is convincing 
and effective for transferring ground based lessons and experiences to on-orbit operations. To 
accomplish this goal, complex space station embedded systems incorporating advanced automation 
oriented technologies will need to be provided for in the SSTF design. As discussed previously in 
Section 4.0, embedded systems featuring artificial intelligence, adaptive control, or machine vision 
may need to be accommodated through either stimulation of flight equivalent hardware executing 
the embedded system software, emulation of the embedded system with commercially available 
special purpose processors, or functional simulation of the embedded system within the host 
simulation computers. The following sections discuss at a high level the technical issues associated 
with these special purpose processing technologies and the impact of their incorporation in the SSTF 
computer complex concept. 

5.4.1 Symbolic Computing 

Symbolic computing, used heavily within the Artificial Intelligence (AI) community, is based 
on data-driven programming which embraces data flow machine type architectures. Symbolic 
programs tend to be heterogenous and diverse, involving a variety of mechanisms and conceptual 
tasks within a single program. For example, the manager of an autonomous space vehicle will 
perform a variety of tasks such as hierarchical classification, signal interpretation, hypothesis 
formation, matching, and logical inference in addition to conventional numerical tasks. 

The large and complex problems typically addressed by symbolic computing utilize these 
unique techniques to achieve the needed levels of structure and abstraction to make the problems 
manageable. The knowledge representations they use require large and uniform address space within 
the computer. The computing style also tends to create large numbers of temporary data structures. 
This means that the system must support garbage collection, the process of reclaiming unused storage 
at a rate rapid enough to always provide for free, symmetrical storage. While these applications 
can be developed for traditional machine architectures, significant performance improvements can 
be achieved by using unique machine architectures. Symbolic computers view each computer word 
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as containing a data field and one or more tag fields. The tag fields are used to identify object type, 
to delineate their extent in memory, and to reclaim unused storage efficiently. Symbolic computers 
are usually microcoded to accommodate the tag processing task, but otherwise resemble conventional 
stack-oriented computers. 

5.42 Vision Computing 

Visual image processing avionics, otherwise known as "visionics" systems, provide an on board 
means of sensing, processing, and analyzing real-time imagery that is generated by a vision system. 
Visionics systems allow man and machines to perceive objects and spatial relationships that exist in 
the vision system's field of regard, Vision computing systems are typically high speed numeric 
processors that operate on vectorized data sets describing the intensity/color of individual picture 
elements (pixels) that make up the sensed image. Real-time image processing calls for the visionics 
system to accommodate video rate communication speeds. For TV displays, this rate is almost 63 
Mb/sec (512h x 512v x 8 bits x 30 Hz). Current visionics systems typically sense and process around 
2 million pixels per second (256h x 256v x 30Hz). The sensor image is then reformatted to match 
the operator (TV) display characteristics. Processing all pixels at real-time speeds is a tremendous 
computing task. Visionics systems minimize the need for computing power by performing operations 
only on a designated area of interest within the field of view. For example, an algorithm requiring 
30 instructions per pixel can be performed at video speeds on a 50 x 50 pixel area of interest with 
a 2.5 Mips class machine (50h x 5Ov x 30Hz x 30 instr. = 2.25 Mips). The SSTF host simulation 
computer complex must be capable of providing the functionality that on board visionics systems 
provide for space station operations. Typically, this functionality can be provided for simulation 
through the use of dedicated image processing equipment capable of capturing and analyzing visual 
scene data from a digital image generator (DIG) in real-time. Many of these systems are available 
that communicate with host computing systems via standard bus interfaces such as VME. 

5.5 Visual System Technologies 

The SSTF computer complex is also required to support synthetic image generation 
equipment that will provide dynamic out the window visual imagery and correlated sensor video for 
a variety of simulated space systems that require operator interaction. The interfaces between these 
visual system devices and the host simulation computer complex should be very flexible and adaptable 
to ensure that the SSTF computer resources are utilized in the most efficient manner to support 
stand-alone, combined, integrated, and joint integrated training sessions. The following discussion 
focuses on two aspects of visual system integration within the SSTF, digital image generation and 
digital image processing. Specific technical issues that must be considered in planning for the 
integration of these visual system technologies into the SSTF concept are presented at a high level. 

5.5.1 Digital Image Generation 

DIG systems are now available that support multiple concurrent eyepoint access to a common 
database. This is a necessary capability to ensure cue correlation, especially during multicrew 
training scenarios. Multiple eyepoint access to a common database is required to support training 
activities such as handing objects back and forth between independently controlled, cooperating 
manipulators; as in passing a simulated object between the SMTF and the SSTF. The key DIG 
feature for consideration is database compatibility. Multiple copies of scene databases to support 
varying fidelity viewing requirements is not desirable due to the additional operations support 
required and the potential for trainer-to-trainer correlation problems. Ideally, the image generation 
equipment utilized within the SSTF should be capable of sharing a common database format by 
either preprocessing the common database during mission generation or by constructing the necessary 
scene content at run-time based on embedded parametric data. 
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A major DIG consideration is the ability of the DIG to correlate with CAD/CAE based 
models as discussed in Section 4.0. Research needs to be pursued in the compatibility issues 
associated with commercial graphics descriptors and visual scene database descriptors commonly used 
within the simulation industry. Figure 5-10 illustrates the critical role that the visual system plays in 
providing an integrated simulation environment for robotics training. Other considerations deal with 
the ability of the visual system to feed back ray tracing data for robotic end effector range and 
contact sensors. When given a ray location and orientation within the database, the visual system 
traces the ray to identify the point at which the ray intersects a database object. Current flight 
simulator visual systems provide this range feedback capability in a limited form (around 30 range 
requests per second) for radar altimeter readings and weapon impact positioning. The demand for 
these services within the SSTJ? will be much greater due to the need to simulate several sensors on 
multiple manipulator arms. 

The host simulation computer configuration should also be flexible in its ability to drive the 
visual system based on selected training mode @e. stand-alone, combined, etc.). For reliability and 
growth aspects, it would be desirable for the visual eyepoint interface to be provided by any of the 
host simulation computing nodes, rather than relying upon a dedicated node for visual system 
interfacing. This multi-channel approach would allow the computing resources to be flexibly allocated 
as a function of training mode requirements, as opposed to being allocated according to fixed 
hardware dependencies. 

53.2 Digital Image Processing 

Digital image processing technology provides for field- and frame-based analysis of video 
format images. Digital image processing is a central component of robotic machine perception 
systems that analyze and act on the robot task space. The machine perception system searches for 
recognizable objects within the sensor field of view, tracks operator designated objects, and provides 
image based navigation signals for manipulator path dynamics. Integration of digital image 
processing technologies into the SSTF simulation environment should be anticipated to support the 
training requirements for robotic manipulator operation. The SSTF host simulation computer 
concept should be capable of accommodating this technology to provide for adequate robotic systems 
training. 
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Rob0 t ics/Visual System Integra tion 
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6.0 Concept Objectives and Technology Assessment 

Many of the state-of-the-art simulation technologies previously discussed hold promise for 
solving many of the simulation challenges discussed in Section 4.0. Application of these technologies 
to manned space flight simulation and training will better enable NASA to achieve established goals 
and objectives concerning the operation of SSTF resources. In assessing the feasiblity for 
incorporating these technologies in the SSTF concept, many issues must be addressed concerning 
embedded system simulation and alternative host simulation computer configurations. These issues 
are presented below. 

6.1 SSTF Computing Objectives 

The SSTF host simulation computer complex must be capable of accommodating all of the 
computing needs required to provide accurate, near real-world training scenarios. The skills and 
lessons learned in the SSTF should be directly transferable to space flight operations, with minimal 
re-learning necessary to overcome ground based training deficiencies. Achievement of this goal 
requires that the host computer complex be capable of interfacing with a variety of special purpose 
processors that are dedicated to performing a specific function such as a knowledge based system 
or visionics system. In many cases, the appropriate level of system functionality may only be achieved 
by stimulating or emulating flight equivalent processors or special purpose processors executing flight 
software based algorithms. Special purpose processor interfacing will most likely be through a MIL- 
STD-1553 type mux bus or VME type interface. The host computer complex should offer many 
possible means of accommodating these interfaces, rather than relying upon a dedicated 1/0 chassis 
for all external communications. Distributed and open 1/0 interfacing will allow the computer 
resources to be utilized in the most effective manner for accomplishing simulation objectives, without 
having to resort to fixed, dedicated resources for specific training situations. 

The host simulation computer resources must also be capable of quick reconfiguration in 
terms of run-time software loads and mission unique payload accommodation that may call for 
special purpose processing. The processing environment must be easily configurable between 
concurrent stand-alone and combined/integrated training activities. 

Similarly, the host simulation computer resources should be flexibly configured to support 
the necessary training requirements asssociated with each training mode (i.e. stand-alone, combined, 
integrated, and joint integrated). These training requirements may involve multiple DIG visual 
channels to support various training scenarios involving simultaneous, independent systems operation. 
To support this mix and match capability among trainer stations for part-task training, it is 
recommended that the host computer resources be flexible in the ability to drive visual interface 
channels from any computing node. 

The SSTF concept calls for variable embedded system fidelity based on the selected training 
mode. Part-task, stand-alone training sessions call for medium fidelity, single system oriented 
response, while combined full-task training sessions call for high fidelity, full systems interaction 
across all space station systems. To provide for these capabilities, the multi-computer host simulation 
resources should be easily reconfigurable to support multiple concurrent part-task sessions or 
combined full-tasks sessions. Conceptual simulation technologies may prove useful in determining 
system designs that support multiple types of training sessions. One approach is to utilize common 
interfaces (Ada packages) between simulation processes (Le. GN&C avionics, TCS sensors, etc.) 
but utilize different programs (Ada bodies) depending upon the specific training scenario that is 
selected. A high fidelity program would offer full systems signature performance while a low fidelity 
program could support procedures training for part-task sessions. When a particular training mode 
and trainer configuration is selected, the appropriate program (Ada body) would be linked with the 
standard interface (Ada package) and the simulation process could then be installed on the 
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appropriate computing node within the host simulation computer complex. This approach would 
allow the computing resources to be dynamically configured and efficiently utilized as a function of 
the training requirements. For example, in stand-alone training mode, each node of the multi- 
computer host could be automatically configured in terms of connectivity and software load to 
support the selected training scenario. Selection of combined training mode could then be 
accomplished by automatically reconfiguring the nodes of the multi-computer host into a single node 
system, with the appropriate connectivity switching and software load to support full systems 
interaction. 

6 3  Architecture Assessment 

Issues associated with the architectural technologies discussed in Section 5.0 must be 
addressed when evaluating possible host simulation computer configurations. The real-time 
computer resources must be capable of not only providing an efficient Ada run-time environment, 
but must also be capable of accommodating special purpose processors, visual system interfaces, 
inter-facility real-time data communications, and be configurable into at least two independent 
processing nodes to support concurrent part-task training sessions. In addition, the computer 
resources must offer efficient economies of scale in terms of processing power and communications 
bandwidth expandability. Provisions should be available for doubling these capabilities without 
serious impact to the initial hardware/software configuration. 

These various needs may best be fulfilled by a distributed processing simulation architecture 
as opposed to a monolithic, traditional mainframe type architecture. A distributed, multi-node 
architecture offers significant advantages in terms of reconfigurability, scalability, redundancy, and 
fault tolerance, Distributed architectures for real-time simulation applications are now being 
supported by the computer industry that offer unprecedented computing power and communications 
flexibility, and they provide an attractive solution for the host simulation computing needs of the 
SSTF. 

Although a distributed, multi-processor architecture is clearly desirable, there are still many 
choices that must be made in configuring a distributed system to meet SSTF functional goals and 
operational objectives. Processor integration and operating system software are two crucial areas 
that will, in large part, determine the ability of the SSTF student training environment to meet 
design goals for life cycle cost minimization, evolution and growth, reconfiguration, and upward 
technology compatibility. 

The method by which processors are integrated to form computing nodes is critical in the 
ability of the computer to provide scalable real-time simulation services. Loosely coupled networking 
methods allow communications over long distances between dissimilar processors, but do not as yet 
adequately support time critical, man-in-the-loop applications with dynamic system configurations 
and unknown message processing demands. The SCRAMNet method provides the best of both the 
loosely coupled and tightly coupled approaches, but currently is limited in the shared memory area 
size that can be supported among several network nodes. Other tightly coupled memory linkage 
methods are designed to support the needs of real-time simulation, but limit system configuration 
flexibility due to their proprietary designs and lack of standardization. But the advantages of a 
tightly coupled distributed computing system far outweigh the disadvantages. Distributed computing 
systems offering mainframe class performance are available today that are based on commercially 
supported CPUs with a clear migration path, high speed direct memory communications, and real- 
time operating system features. It is highly recommended that these systems be investigated further 
for application in advanced manned space flight simulation systems such as the SSTF. 
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The operating system software that manages the real-time computational performance is 
another critical area in determining the computer system’s suitability for scalable real-time simulation 
applications. Many proprietary real-time operating systems are commercially available that have 
successfully proven that Ada can be used in real-time applications. Anchoring on one of these 
proprietary systems that have large amounts of machine-dependent and non-portable code limits 
flexibility and does not answer the call to reduce the use of custom simulation solutions. The 
industry efforts under way to standardize the way Ada is used in real-time applications should be 
closely followed and evaluated in conjuction with the evaluation of architectures. 
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